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ABéTRACT
\ .
In continuance of system studies én the science package for an

unmammed Martian roving vehiéle, a ﬁew-mathematical model for the
- gas chrbmatograph has been developed which incorporates the hereto;-
fore neglected transport mechanisms of intraparticle diffusion and
rates of a.dsox:ption. . Moment analysis oi‘ this Inter-Tntraparticle
AdSoxjption Model has showed the model to be more capable of predict-
‘i_ng spréa,ding‘ in experimental chromatograms. Beca,u.se a closed-form
-analytical solution to the modei -doe_s- not gppear realizable, techni-
ques foi- the nuinerical solution of the model equations are being
investigated. .Criteria. have been developed for using a finite temm-
Iin.al boundary condition required in numerical solutions in pléce of
an infinite boundary condition used in analytical solution techniques.
Tl:ie niethod lof'.Finitle Differences appears computationally inefficient
for gpplication to equéﬁiéiis of the typé 'fo be solved. The claés
of Weighted Residuael methods known as Orthogonal Collocation is

presently being investigated and gppears promising.
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I. INTRODUCTTON AND SUMMARY

'The mathematical modelling of the gas chromatorgaph is one sub-

task of a group effort designed to define fundamental system design
‘eriteria necessary for an optimal design of a combinastion gas chroma-

. tograph - mass spectrometer which is to be parﬁ cf an unmanned mission

to Mars. The task which must be performed by this part of a Martian

- Roving Vehicle is the analysis of samples to determine the existence of

brganic matter and living organisms on the Martian surface, The analy-

sis will involve the subjection of gaseoué, ligquid, and solid samples

:mbmbgwlmdmmpdrm&mm,mms@%@mtmwmt%mmﬁm

and identification using the gas chromatograph - mass spectrometer

system.

The chromatograph may-bé"lookéd.upoﬁ a8 & separating device where

the phenomenon of adsorption-desorption is utilized. Owing to the

- @ifferent characteristies of various chemicals, each species will adsorb

‘and desorb at different rates when exposed to a packed bed of grarular

p#rticles with or without a liqﬁid_gubstrate. Bspause of the unique
behavior of each chemical, a multi-component sample may be injected
iﬁto a chromatograﬁh and elute as separate waves of specific chemical
species,

The transport mechanisms which have been included in previous

model formulations are all .interparticle mechanisms with simple adsorbed

phase behavior assumed. These previous model formilations have proven
incapable of adequately predicting component behavior in all cases.

Consequently, a new model 1s developed which includes both interparticle



and intraparticle transport mechanisms. This model is analysed in the
Laplace.transfo;m dﬁmain using the method of moments. The first three.
-moménts of the impulse response of the model are defived. Using actual
input data, predictions for the firstAfhreé moments of the outﬁut data
‘are made andiare ccmpared'with actual output défa and predictions of
a simp;ér interparticle model. The rééults indicate that the new modél
'is more capable of the prediction of the moments of the actual data.

Because *the mathematlcal complexity of the new model prohibits
a direct, closed-form analytic expression for a response, investigation
:of numerical techniques spplicable to the equations of the old and new
models is madeﬂ The numerical techniques require a finite terminal
boundary_condition as opposed to an infinifé'column houndary condition
{ used in analytic solution (when possiﬁle) of the chromatographle model
partial differential equations. Using a simple, transient diffusion-
.cdnyection equation, criterié aré_déveloped wherein a finite terminal
'.boundary condition can bejépplied to yield infinite column.behavor at.
the bed outlet. . 7 ¢

An analysis of two methods for ﬁhe nuﬁerical gsolution of partial
differential equations of the type encountered in the chromatograph
modelling work is subseguently made. The teéhniqpe of Finite Differ-
ences is rejgcted due to excessive computer time reguired to produce
model simulations. The tedhni@ge of Orthogonal Collocétion, while not
establishéd as the best method; offers promise and is the current area

of modelling endeavor.
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II.  CHROMATOGRAPH SYSTEM MODELLING

A.  Chromatograph Modelling Background

One ares of the overall gas chromatograph systems study has

- been the mathematical modélling of the chromatograph system. Work in

this ares has been carried out by several investigators (Sliva, 1968;
Voytus, 1969; Taylor, 1970; Keba and Woodrow, 19?2). A course has been
pursued wherein successively more complex models have been considered.

These models have all yielded analytiecal expressions from which a simui-

lated chromatogram could be computed directly. Comparison of predicted
- system behavior with actual system dats has directed modelling efforts

- to consider more adeguate and hence more cowplicated models.

Prior to this investigation, the most complex model pro-
pbsed for therchromatograph system was based on an interparticle phase
mass belance and an adsorbed phase mass balance. Several transport

mechanisms were included: axial diffusion, convection, and mass transfer

between the interparticle-and adsorbed phagses. A linear isotherm was

used to desc¢ ribe the @dsorption kinetics. This model has been studied
and compared (Keba and Woodfow, 1972) for the cases of finite rates of
mass transfer to the adsorbed phase (nonequilibrium adsorption) and
infinitely high-rates of mass transfer to the adsorbed phase (equiliﬁrium
adsérption). In both cases, simulaiioﬁs uéipg the models failed to
pfedict the degree of disperéion exhibited by many of the experimental
data. It was concluded‘ﬁbaf édditional~transport mechanisms, e.g.,
intraparticlé diffugion, may be contributing sppreciably to the

ovefall adsorption-desorption process. Hence, further model develop-

ment and analysis was indicated.



‘B.  Develompment of the Inter-Intraparticle Adsorption Model

Previoﬁsly, the ;ntraparticle region of the chromatograph
.packing maferiel has been modelled as being nonexietent or a&as & reglon
where the transport‘processes occur et sueh‘a rapid rate so as not to
'significantly affect the dynamic behavior of tﬁe system. It is the
pufpoee of this section to reformulate the chromatograph system modei
by including the transport processes which are.presumee most likely to
'affecﬁ the dynamics of the adsorption-désofption process within the
chromatograph packing material? |
Figurerl presents graphically the transport processes to be

modelled. The sample to be separated is injected into a relatively
inert carrier éas, g.g.; helium. As this elug of sample is transported

. down the chromatograph by the carrief gas,.the various sPecies diffuse,
adsorb, and desorb. Diffusion of fhe chemicals in the direction of the
| earrier gas flow in the intefparticle region is represented by the

dimensionless parameter,e1Pe which is Aetermined by the system fluid

-
mechanics. Mass transport from the‘interﬁarticlg;region to the intra-
perticle region is represented.by a diﬁensioﬁless parameter, NtoG’ |
which is essentialiy determined by the system fluid mechanics. Diffusion-
in the intraparticle region is represented by dimensionless parameter,
PeA, which is in part determined by the properties of the particle
packing. The rate of adsorption within the particle ie eharacterized

by the dimensioﬁless parameter; N, Adsorption-desorption within the

RU’

particle is represented by mRIl‘a thermodynamic parameter peculiar to

each species. This parameter contains an equilibrium constant, m,



' . Figure 1 :
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and the quantity 3{. RI is the ratio of moles of fluid within the

particle to the moles of adsorptive sites within the particle. The

0 0
. the ratio of moles of fluid within the total bed to the moles of adsorp-

quantity RI ig directly related to the quantity R. where R, is

‘tive sites within the total bed. The relationshin between these quanti-

ties is

€ : . £¥
RI_ - 1-c /e Ro L . (1)
The reason for noting this relationship so that the parameter mRO has
been noted in previous models and the above relationship serves as a
unifying concept for the new model formulation which follows.
with the above concepts in mind, the following set of dim-

1 *-%
Y ensionless equations has been derived. based on the assumptions which

follow:
| An iﬁferparticie phase mass balance;
PeE aze dz -tqg 7 it | Qe
An intraparticle phase mass balance:
2 _ -
e, 'Ii) 2 6'_% .2 ) 0y - ek )
PEA R a1 r gr RU i i ab .

* See Section IX, Nomenclature, for definition of terms.

** See Appendix A for derivation.



An adsofbéd'phase mass balance:

dx | |
(-ﬁ;) 5 0 Vo Gy B CY

: A thermodynamic relationship between the intraparticle
and adsorbed phages: .

y. = mx . (5)

‘The above equations ére valid under the following assumptioné:

1. The colum is isothermal. |

2. The.carrier gas velocity profile is flat.

3. The axial diffusion coefficient is a composite factor

" which may or'may.ndt have a turbulent component. |

L, Thergas composition is apprﬁximately consgtant in the
radial direction at a giﬁén axiél position, The con-
QEntration gradient occurs in a thin boundary layer at.
-the inte;pértiélenintraparticle interface.

5. The gas cémpésition within the particle is approximstely
constant in the angular direction at a given radial
position;‘the concentration gradient occurs only in a

- thin boundary layer near the adsorbent surface.

6. The adsorbent layer is so thin that there is no diffu-
-sioﬁél resistaneé within the layer in the direction
n0nnal.to‘the surface.

7. The diffﬁsivity in the adsorbent layer is so small that

there is no diffusion in the direction parallel to the
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surfaée‘in fhe_intraparticle radial directiﬁn.

8._ The net rate of adsorption for the carrier gas is
negligible,

9. Only one component is adsorbed and its gas phase com-
position as a mole fraction is small compared to unity.

10, The carrier ges hbehaves as an ideal gas.

| An.appliéable set of boundary and initial conditions are
88 follows:

Initisl Conditions:

¥ (z, 0) .= 0 . | (6)

¥y (2 7, 0) = O (7)

x, (2 1, 0) = 0 (8)

Boundary Conditions:

¥ (05 8) = A . (9)

[(-g)a L (%) / P-eJJ é—r—l = NtoG(y - yi); when r=1 ... .(10?
¢ v; |

é—l—.—- = 0 3 r=10 (ll)

lim ¥ (z, 8) = finite (12)

| B m®

These conditions refleét_a semple-free column at zero time, a sample
injected as an impulse, mass transfer between the interparticle and

intfaparticle regions, no t:oncantration gradient at the center of the



o
-

column packing, and no end éffeéts at the column éxit.

_ For the systems under consideration it has been shown by
Keba and Woodrow (1972) that inclusion of the parameter N is of
minor importance. If one were to considér the case of infinite rates
of mass transfer, i.e.; Ny =~ ®, the coupling condition given by
equation (10) would be replaced by

v (21, 8) = y(z8) a

Thus, a .model in the form of a set of coupled, partial

differential equations is proposed. Prior to consideration of the time

_domain golution of the equations, a moment anslysis can be made To

ascertain the predictive capabilities of the proposed model. This

analysis is the subject of the next part of this report.

IIT, MOMENT ANATYSIS OF THE INTER=-INTREAPARTICLE ADSORPTION MODEL

A. Theory and Background

n apalysié‘of a proposed modél can be made prior to deter-
mination of *he model's time—dgmain solution %o yield the gross charac-
teristics of the impuise‘resbonse of the model. In addition, because
of the poor ﬁredictions of ﬁrevious models with respect to chromatogram
spreading, it ié desirable to know the nature of the response of the

proposed model for the pulse-type forcing functions used in experi-

mental work. The nature of the response can be characterized by statis-

tical guantities known as moments which may be obtained without knowledge
of the time—domain model solution. The moments may be derived directly

from the Laplace domain solution of the model. The following develop-
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ment will indicate how the moments of a model are obtained and how
ﬁhe analysis can be exfended to give the moments of systgms forced by
general pulse-type inputs.' |

The impulse response of the chromafograph may be vieweﬂ_
as the residence time frequency distribution (Douglas, 1972). This
Quantity resembles the probability distribution function ﬁhich appears
iﬁ statistical analysis. The moments of the distribution function.

about the time origin are defined by the following:

®» @O

u = e r(o) ae /] rf(e)ae Co(a)

o | o
where -_
| £ (8) L the distribution f‘m‘lctionr being enalysed.
The denominator of equation (14) is the area under the fumction. The

relationship of the moments about the origin to the Laplace transform

is developed in Appendix B. The result is:

n all ~ ~ ,
by = (U7 umdd [F(e)] ¢/ 1um 1 (s) (15)
} : 520 ‘asn g0 ‘
where
N‘ - @
£ (s) = L [f (e)] Qf e r0) ae . " (16)
N _ s

Interest also centers on the moments about the first abso-

lute moment or mean, Hy - Mathematically these moments are defined by:

: {2 a)
noo= (e-ul)nf(GDdeff £(0)ae;n2 (17)

n

o
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These moments about the mean Hys aTe directly related to the moments

ebout the origin. The relationships are obtained by formal expansion

" of equation (17). Appendix B gives the relationships for n=2 and

n=3. For mn=2, the moment sbout the mean is exactly the variance of

the response. For n=3, the moment sbout the mean is related to the

- skew of the response.

M
.

One can use the preceding to develop equations relating

the moments of system responses for arbitrary pulse-type forcing

functions (see Appendix B for details). That is, given the system

input data (the moments of which can be computed from equation (1))

and the system transfer function {the Laplace transform of the impulse
response), the moments of the system response may be determined and
compared with the moments of the actual output data. Referring to

the block diagram in Figure 2, the results are:

Moo ohek o

My = “17: * F‘lG (19)
;21' - EEX * g (20)

Equationl(18) sfates that the area under the output curve is the product
of the area under the:inﬁut curvé and the Impulse response curve,
Equation (19) states tﬁat‘the mean of the output occurs at the sum of
the mean of the input function and impulse response. Equation {20)
states thﬁt the variance of the output is the sum of the variance of

the input function and the variance of the impulse respomnse. Equation



12,

X(s) g - Y(s)

X(s) = L [x (9)] s x (&) is the forcing function
‘Y(s) = L [y (9)] ;3 v (8) is the system response
G(s) = system transfer function

s

Figufe 2, Typical System Block Diagram
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(21) states that the third moment sbout the mean of the output is the

sum of the third moments about the means of the input function and

impulse response, respectively.

This technique can also be.used for estimating sytem
parameters. Douglas (1972) uses an équation similar to equation (20)
£p estimate an axial Peclet ﬁumber for a packed bed. Schneider and
Smith (1968) apply moment analysis to estimate adsorption equilibrium
constants, rate constants, and intraparticle diffusivifies for a

chromatographic system modelled similarly %o that.of Part II.

A However, accurate parameter estimation using this method is 1imited

by the accuracy of the data used for analysis.

B. Application of Moment Analysis to the Inter-Intraparticle

Adsorption Model

The previous sectién outlined a method which can be used
tb analyse pulsed systems to determine the gross characteristies of
the system response. This section will document an applicatioﬁ of the
concepts of moment analysis to the proposed model of Part II. -

Congider the set of partial differential equationé, boundary

conditions, and initial conditions, equations (2) through (12). A

fiaplace transform domain solution for the impulse response or transfer

function was derived and appears in Figure 3; details appear in
Appendix C.
Applying the definition given by equation (15) and using

equation (17); the moments "y ;2’ and Eé are derived for the

‘impulse response of the Inter-Intraparticle Adsorption Model. The



Figure 3. .

where:

Y(l,s)

-

If

: Pe . | Pe -
. &xp {:éE ;\//'hE +7(s) Pep

NtOé(l-,?\.(s))+s ' |

‘b sinh (\/é’—l) _
E("b;l)sinh (\/a_l) +\/€ cosh (J-a—l)—_l
> .
=N mR : ' 2
S i + NRU + 8 (.%) PeA
(8 + NppRp) '
Niog
3B (1-¢) (E)g L
- TE R Pe,

Particle porosity

Bed void fraction

Transfer Function for the Inter-Intrapafticle Adsorption Model.

‘“I
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" correlations. The values of mR

151

results are presented in Figure L; details of the manipulations appear

in‘Appéndix D.

The parameters PeE, NtoG’ and PeA cen be estimated a
priori. The parameters mRO and NRU are nqt predictable a priori.
" Previcus modeling analysis has estimated mRO by a curve fitting
procesé (Benoit, 1971). The estimation of .NRU will most likely

Involve curve fitting also.
An @nalysls was made using existing single component data.

The parameters PeE, PeA, and N were estimated using existing

toG

5 which were estimated by Keba and

Woodrow {1972} using simpler models were used and the parameter N
was varied. Tables 1 and 2 give results of“this analysis for acetone
at 100° ¢ and ethylene at 50° C. Both experiments used Chromasorb 102

columm packing a porous material. In eaéh case, the moments for the

| impulse response of the model were computed using the equations given

in Pigure 4. Use of sysfém input data and equations {19) through (21)

give predictions as a funetion of N f~r the cqutput moments. These

RU
bredicted values are comparé@ with actﬁal moments of the oubtput dats
and with the prediétions of the simpler, interparticle equilibrium
sdsorption model. Expressions for the moments of the simpler model
were initially developed by Voytus (1969).

The results indicate that the proposed mod;l can more
closély pfedict’the characteriétics of‘the output data than the simpler,

interparticle model, The results indicate that a value of N__ on

RU
the order of several hundred will give a predicted second moment very
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™ =1+ 1/mRO + (1-€) B/e

Ty = 2 <;,1)2/PeE v 2 [ (1-¢) B/e | (1 + 1/nR;)® [(‘R/L)E Pe,/15 + (1-¢) B/e NtoG]‘+' /8, (mRI)a}

+

6 [(;-e)‘ 5/6]' {2[(1 + maI)/NRU‘(mRI)EJ [(r/n)® peA/is

2

+

(e Ble ]+ 1+ 1m)® [((1-e) o/e )

+

2 (1-¢) B (R/L)2 PeA/l5 e Ny

I/NRUE | (mRI)3}

~

G

- 23 (r/n)t PeAa /s |

+

Figurelh. Moments of the Impulse Response of the Inter-Intraparticle Adsorption Model.
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TABLE 1 |

MOMENT ANALYSIS aND PARAMETRIC

STUDY - ACETONE 100°C.

| . (1), (2)
m:RO M1, observed M1, predicted M, predicted
0.029 ' 173.29 158.69 156.49
- - _ o _ (@
CRU o Ho observed H 2, predicted Ho, predicted
100 815.67 _ _ 977;55 437.28
200 : _ _ 723.41
4oo 686,34
8oo _ : 517.80
1600 : o 483,53
3200 ~ 466,40
6400 . . : L57.83 :
12800 453,55 -
25600 _ ~)£- hsi.hy A S
_ - - _ (@
NRU o “3,o'bserved . ' J"'%,.predicted J'13,Qrecﬂ.icted
1000 25h04.0 . 23192.2 19499.2
200 . ‘ 20L5h &
Loo ' o 19745.3
800 : - 19555.° €
1600 , 19501.7
3200 B 19485.1
6400 : . 19480.4
12800 . - 19477.2
25600 Y . 1oh76.2 Y
Pe, - = 8689 |
E
Ntoc- = 88960
2
(L/R) ./PeA = 328.2

(1) Inter-Intraparticle Adsorption Model
(2) Interparticle Equilibrium Adsorption Model



MOMENT ANALYSIS AND PARAMETRIC

TARLE 2

"§TUDY - ETHYLENE 50°C.

0 “l;observed

0.194 26 475

N M
U 2observed

;100 ' 7.024
200 :
‘400
800
1600
3200
6400

12800 ‘
5600 al

RU M3

100 19.623
200
koo

- 800

1600

3200

6goo

12800

- 25600 ~j£—

&
i

gTih

=k
fl

tbG 79750

(L/R)e/PeA = h36.2

(1)
I‘llered:i.a::ted
25.986

-(1)
Ho
Eredicted

13.283
6.973
3.817
2,240
1.hk51
1.056
0.859
0.760
0.711

E(l)

3predicted

13.049
3.519
1.058
0.403
0.219
0.163
0.144
0.137
0.134

' 1§_ Inter-Intraparticle Adsorption Model
Interparticle Egquilibrium Adsorption Model

18.

(2)

M1, predicted.

23.719

~(2)
L
0.388

=(2)
H3 .
predicted

0,191
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" difference in the two component behaviors is the parameter mR_.

. 19 .

close to the second moment of the output data. This magnitude of

NRﬁ is consistent with the values of NFU which were obtained in

independent research by Schneider and Smith (1968). Tables 1 and 2

further indicate that matching of the third moments would give different

- values . of NﬁU' However, the use of third moments is not as relisble

because data inaccuracies are further magnified in the‘analysis.

It should be noted that if one accepts the value of Ney

as being on the order of several hundred for each case, all other

parameters, excluding mR., are of the same magnitude. The key to the

0

0

Iv,  TERMINAL BOUNDARY CONDITION ANALYSTS

Mathematical modelling of chromatographic systems commonly

require solutions to equations of the form:

(17P65 (a,?_y/@f) - 0y/dz - R, =&y/aé | (22)

Application of analytical, techniques to the above equation, when possible,

commonly utilize the terminal boundary co ditiong
lim y (z, ) = finite ; © >0 (23)
%, (D - ' .
Use of the above boundary condition in'analytical work yields a great

deal of mathematical simplification. In addition, the use of this

'boundary condition is coﬁsistent with the theory which has been devel-

oped for predicfion of the dispersion in packed beds; see, for example,

Gunn (1969) .‘
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Bastian and Lapidus (1956) considered the case where R

condition.

20,

‘However, when numerical techniques must be applied to solve

equation (22), the terminal boundary condition given by equation (23)

must be replacéd by a temminal boundary condition which is both computa-

tionally expedient and physically meaningful. A finite terminal boun=-

dary condition which has found genefal usage in chemical reaction

engineering problems {Wehner and Wilhelm, 1956) is:
dy (1, 8) /dz = 0 ;5 & >0 (2k)

in eguation
" 1 ai 1

' (22) was an adsorption term. A linear relationship was assumed to

describe the adsorption kinetics. For a step-input and the conditions

chosen, Bastian and Lapidus showed that finite column calculations, using
equation (Eh) as a terminal boundarylcondifion, closely approximated
infinite column calculations, using equafioﬁ (23) as a terminal boundary

The analysis of ch?ﬁmatbgraph systems for pulse-type foreing
functions has prompted coﬁsideration of te two ierminal boundary con-
ditions. The question arises as to hoﬁ the use of a finite teminal
boundary condition -affects output prediction as compared to the infinite
colum case when the system is‘fCrced'By pulse;type functions, It is
desirable for the two predictions of column outlet behavior {z=1) to be
simiiar so that the use 6fi§ priori estimates of Pe are valid in
complicatéd models having the form of equation (22).

In order to answer the abo#e question and to estzblish the

conditions under which a finite terminal boundary condition can be used
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to yield infinite column behavior at the columm outlet (z=1), two

relatively simple problems can be considered:

Case I:

(1/pe) P/ 22) -oy/ oz - R, = 0O (25)
y(z, 0 =0 ; 220 o ' (26)
y(0,6 - @ ; e 2o (21)
lin y (z, 0) = finite | (28)
Z—3 W
R, =0 5 (29)

“and

C;se II:

(1/re) (8 %y/y &) - (03/d2) -, = O - Go)
y(0 =0 5 z>0 | (3)
700, 8) = &) 5 620 , (32)
dy(zo,e)/az = 0 3 © >0, 'z';?l

and afb;trary (33)
Ry = 0 - (34)

Case I considers the unit impulserre3ponse 5f the simple, one-
dimensional, axial dispersiﬁn—qonvection model in an infinite column.
Case IT considers the unit impulse response of the simple, one-dimensional,
axial dispersion-convection model with the finite column boundary condi- |

~ tion. It is desirable to determine the conditions under which the two
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responses are equivalent. These conditions can be determined without

resorﬁing to the comparisons of the analytical solutions for each case,

" through use of the method of moments,

pN

At a dimensionless length of unity, the column outlet, the

' : - *
. laplace transforms of the two solutions are :

. Case TI:

¥ (1, 8) = exp ((Pe/2) - (are) | o (35)

Case IT: _

y(l’ s) = exp (%?)_ (%; + arg} exp [;tl-zo) . ;ré] - (%; - arg)
. eXp [(i-zoj . arg]} {{%ﬁ + arg) exp [‘ZO (arg)]

~ (%; - arg) exp [& Zy (argil} ces (36)

where

arg = \JPee/h 4+ Pe s : | | | (37)

Each, respective éutput-curve can be characterized by its Jaoments .

- Two moments are considered here - the first moment sbout the origin ‘and

the second moment about the mean. The first moment about the origin

' gives the time of appearance of the mean of the output curve. The

second moment gbout the mean gives the variance of the output curve.

These moments, as has been previously noted in Part III, are directly

obtainable from the Laplace transform domain solution. The general

relationships were given in equations (1h) through (7). Using these

* see Appendix E for details.
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relgtionships, the‘Case T and Case IT transfer functions were analysed

to yield:
By 0= Al | : : ' (38)
o | - |
W, = 2/Pe - | (39)
I _ , _ .
and :
ulII = 1+ {:éxp (-Pe Zo) - exp (?e - Pe Zoj] /Peu (40)
IEQII = 2/Pe + exp (Pe - Pe - ZO) [jh/Pe - b ZO/Pe

_EhlpeE:] + exp (-2 ZO Pe)/Pe2

- exp (2 Pe - 2 Z, Pe)/Pea vee o (h1)

. ¢ If one considers the 1imit of the Case II moments as Zg becomes very

[

large, the two results are eguivalent, or:

-

lim W= = 1
Z 1T I
0 -
and o ¢
lim iy, = H, = 2/pe
Zd+wn - XTI T

Table 3 summarizes the results of parameteric studies of the
two moments considéered for each case. The errors in Case II versus

Case I moments for Z, = 1 are significant for low Peclet number.

0

The error diminishes with increasingrPeclet mumber. This confirms the

qualitative conclusions of Friedly (1972) for high values of Pe,



 Table 3. Case I and Cagé II Comparison Results

Frrors at Z, = 1.0
Relative Error,% . Relative Error, % ,
£bsolute [TI— Absolute B o=y o Sefe 7 Safe 7.
Error ) ( 1171 H) x 100 Error 21211 x 100 0 L ° _
(Hg =K M ' (hp =t o) - (hy o=ty )% (Mg =H, )%
Pe 117M1 11 11 e 1mHe 1r T 11 1T Ha 17H2 11
2 0.4323 43.23 1.2h5 12h.5 9.791 11,768
4 0.2454 24,54 0.3125 62.9 5.254 6.021
8 0.1250 12.50 0.07813 31.2 3.043 3.328
16 0.06250 6.250 0.01953 ' 15.6 1.978 2,073
32 0.03125 3.125 0.004883 7.91 1.k67 1.h490
6L 0.01563 1.563 0.001221 3.91 1.223 1,222
128 0.,00781 0.781 0.0003052 1.99 1,106 1,044
256 0.00391 0.391 0.0000763 0.976 1.050 1,002
512 0.00195 0.195 0,0000191 0.489 1.024 1.0005
1024 0.00098 0.098 0,0000047 0.2h1 1,011 1.0001
2048 0.0004g 0.0k9 0.0000012 0.123 1.00% - 1,00002
hooe 0.00024 0.024 - 0.00000C3 0,0615 1.002 . 1.000005
8192 0.00012 0.012 0. 0000000 0.0 1.001 1.000001
o8
* s M1z 10
*¥* 0 < 10‘8

.1_(3
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Table 3 also gives the value of %, which, when used in Case II; will

0
yield output characteristics the same as Case I output characteristics.
This means that for a given Peclet mumber, application of egquation (33)
gt the noted ZO’ will yield output characteristics at Z=1 that are,
for all intents and purposes, the same as those predicted by Case I.

Table & presents sqme.typical values of the Peclet parameter
for séveral systems. Tor chromatographic systems, the range of the
Peclet number is on the order of 5,000 to 10,000. Thus in this research,.
it-appears that use of the zero-derivative condition-(EQuation 33) at
- the column exit will not cause serious problems.

In conclusion, the comparison of the mean and variance for
impulse responées at Z=1 for the two different boundary conditions
has yielded guidelines which are useful when aspproximating infinite
columm behavior using a finite terminal boundary condition. The use of
the criteria for-general pulse-type forcing functions would yie;d
results wherein the absolute errors between the two cases would be the
same but the relative errors between cases would decrease. The eppli-
cation of the results for models including other transpcrt mechanisms
(RA % 0) may be somewhat conservative. When applicable to more compli-
cated models, the method of analysis used here will give more definite
guidelines forreach specific situation.

V. - EVALUATION OF NUMERICAL TECHNIQUES - FINITE DIFFERENCE

This section and the one that follows present evaluations of two
techniques which are available for the numerical solutions of the type

of partial differential equation models that have been used and that



Teble 4. Peclet Numbers for Four Typical Systems

System

Micro Gas Chromatograph Column
(Water in Helium)

Typical Gas Chrcmatograph Column
(Water in Helium)

Typical Gas Dehydrator
- (Water in Helium)

- Small Experimental Reactor
' (SO2 in Air)

Pe

233
5622
17T

155
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are being postulated for the chromatographic system. The two methods

considéred are the.Finite Difference method and the subelass of

Weighted Residual methods known as Orthogonal Collocation.

Finite Difference Methodrr
Finite difference approximatioﬁs have predominantly been used in
the .analysis of partial differential equations. To oﬁtain numerical
sdlutions to partial differential equatioﬁs, one replaces the contin-

uous variables with disgcrete variables., The relations between these

discrete variables in the method of finite differences are called finite

difference equations. The relgtionéhips are based on Taylor series
representations of the dependenf variable..'The domains of the independ-
gnt variables that are discretized form & éystem of grid points. Figure
5 shows a grid representation for £he transient analysis of a system

with one spatial independent variable. The spatial dimension, 2, is

shown as being bounded anﬁ'the-time variable, ¥, is shown with ro

particular bound. The grid is a fixed grid; i.ec, spatial discretiza=-
tions and time discretizations are uniform for each domain. Note that

the value of 7, the continuous space dimensicn is given by:

Zz = i.(Aa7)

‘where i vrefers to a particular spatial grid point and &Z is the

spacing bétween'spatial grid péints. Similarly, the value of &, the
continuous time variable is given by

o = 3.(89)
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J+1

AO

i=1 i+l - zZ Z

" Figure 5. Grid Represenﬁation'for Finite Difference Method

28,



where jrﬁﬂsmépnﬁ@mfﬁmgﬁdmmtmd §9 isme
interval between time grid points.

For parsbolic problems {as is the case for the second-order
chromatograph system models), the two~level implicit method known as
the Craﬁk—Nicolson method is probably most popular and is well docu-
. mented (Lapidus, 1962). In this method, the following approximations
are made for the first and second spatial derivatives and the first
time derivative:

-

Y3431,5Vi-1,3 i1 " ¥ia, a2

J a s :: 1é _
(y/ Z)l*" / 2 (A7) ' 2 (AZ)

. o @ ] Yi,y T Tyt Yia1, Yaed, sV, 5V, ga
(oy/dZ )ij_';: 1/2 : + =
(a2)® (a2)°

9).. - A
where the i subscript denotes a coordinate in the spatial domain and
the j- subscript denotes a coordinate in the time domain.

Preliminary studies have been made applying the Crank-Nicolson

method to the problem:

/e ) (0%5/37) - 339z = dv/de

s
y(z,0) = 0 3 Z - O

'.Y(O: 9)"

1t

68 & > o0

oy (Zy ©)/oe = 03 & > 0
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- Similations were made with the following conditions.

1. ¢ (e) was a triangﬁlar—type‘pulse of duratiﬁn 0.01 and
with unit area. This is guite a sharp pulse as far as
typical chromatograph input pulses are concerned, but
it was usged main;y in the interest of saving computer
time. |

2. The Peclet number was fixed.at 8,000.

3. The time ..increment, AS, was l;leld at 0,000k,

L, Tﬁe resPdnse_was studied at Z = 0.05., This is a drastic
reduction in the normal spatial coordinate studied, but,
sgain, this was donerin the interest of conserving
coﬁputer time.

5. The terminal boundary condition was applied at Z’O = 0.20.

6. The spatial increment, AZ, was varied.in the following

| sequence:
0.0002, ‘o;booh, 0.0010, 0.0025

For spatial increment values of 0.001L0 and less, the simulations were
stable. However, whehd Z ’was increased to 0.0025, instability in
the form of oscillation in fhe response was exhibited. The vezy small
a7 required is directly attributéd to the Pe wvalue used. This
instable Q.Z ﬁalue ig not quite as small as the value that is pre-
dicted by the stability critéria of Price, et. al. (1966).

The simulation for..s‘patia.l increments of 0.0002, 0.0004, and
0.0010 gave reasonabie régults when compared to results convolving |

¢ (8) with the.énaiytical impulse response. The discrepancy between
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hetyeen the analytic and numerical computations appeared in the magni-
tudeé of.each respbnse point - the nﬁmerical results were on the order

of 209, too low., This in turn affected the area beneath the response
curve for the numerical results - all areas were on the order of 0.80

- as compared with the correct area of 1.0. The area under the analytical
response curve was 0.96 which is tolefdble considering the sharp inpﬁt.
This discreﬁancy‘in response area can be resolved by aﬁding additional
'parameters to the difference equations to'yield an exact conservative

relationship (Rogers, 1973):

System;In@ut - Sysfem Qutput over

the interval J to J + 1.

N ‘ N
= z Y5341 ‘,z 1,3

i=1 Ci=1

.Wﬁere N is thé’total numﬁer of spatial points. Thié analysis was not
performed because it was Telt”that the method already suffered from &
more alarmming feature - the high degree of spatigi discretization which
was necessary for the 1argé ‘?e values encountered 1n chromatographic
systems analysis. ‘Extrapolétiqn of the computing time required for the
simulations performed yieids an estimate of one to two hours of com-
puter_- time required for ;:omplete simlations over.the space interval
(0, l.d+), The time would‘naturally increase when broader input pulses

are used. Similar conclusions on the use of finite difference schemes

were reported earlier (Pfeiffer, 1972).
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, 'Because of the high degreé of spatial discrétization-required
by the finite difference methéd'and the subsequent high cost of
chmputer simﬁlations, it is felt that further pursuit of finite
difference formulations for pioblems similar to the above is not
/warranted at this time.and that efforts must be directed to other
methods.

Vi, EVALUATION OF NUMERICAL TECHNIGUES -~ ORTHOGONAL COLLOCATTON

A recent text (Finlayson, 1972) has dealt with several apprdxi-
mation techniques for the solution of the differential equations which
‘arise in the analysis of transporf phénomena. A group of approximation
techniques has been designated the Method of Weighted Residuals (MWR).

A subclass of MWR is the Method of Orthogonal Collocation. This method

- & has been successfully applied to several problems in the realm of

chemical reaction engineering. Investigators in this area include
Ferguson aﬁd Finiayéon (1970), Finleyson (1971), Villadsen and Stewart
(1967), Villadsen and édréﬁsén (1969), And.Villadsen (1970). The
purpose of “1is section is to present a summary of the theéry behind
the method and to discuss investigations that have been made relative
to 1ts applicability to the types of problems that must be solved in
conjunction with the modelling.of the chromatographic system.

A. Theory and Background

The Method of Weighted Residuals approach to the solution
of partial differential eguations starts with a representation of the
dependent variable, ¥y, by a finite sum of trial functions Pi' An

example might be:
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, _ N ,
Y @O T gy (20) + ) & @B, (@) - 2)
: , i=1

where ¢0 (Z,8) is a function which may be chosen to satisfy one or more

boundgry conditions. The functions Pi(Z) are normally sﬁecified and

the time-varying coefficiepté, ai(e), are determined.in a manner to

give the "best" solution of the differential equation.

The next step‘in the MWR is to manipulate the differential
equation such‘that one éide, say the right hand side, of the equation
is zero. Then, the trial function.expansion.is substituted into the
left hand side. This substitution of the trizl function expansion into
the manipulated differential equation forms what is termed the residual,
Reg. If the trial funclbion were exact, the residual would be zZero.

In MWR, the coefficients, ai(e) are determined by specifying weighted

integrsls of the residual to be zero; 1i.e.,

‘[IWE (Res) &v = © s 3=1,2, ... XN (43)
v ‘

The choice of weighting functions, Wj’ determines what
class of MWR is to be applied. For the general collocation method, the

weighting functions are chosen as displaced Dirac delta functions:
. wj=5(z-zj);j':1,2,...1\1 (Lh)

Substitution of equation (44) into equation (h43) gives the result of
foreing the residual to be zero at N specified collocation points.

As the degree of approximation is increased, the residual will be forced
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to be zero at an increasing nﬁmber of points in the spatial domain and
the frial fUnction‘should converge té the true solution within a given
aceurscy.
Within the class of collocation methods is the subclass of
- orthogonal cbllocation. 'The distinguishing fééture of this method is
" that #ﬁe trial functions,. Pi(Z), aré'chosen.as orthogonal polynomiéls
defined by the following relationship: |

. |
f w(z) P, (2) Pj'_(z) az = ¢ . (k5)

1Jd
a

where [é, E] is the interval of orthogonality, W(Z) 1is a positive
‘ weighting function on [é, @] ; c, is a scale factor, and 613 is
 the Kronécké: delta. The group of polynomlals defined by equation (b}
f Qishsaid to be orthogonal on the interval’ [ﬁ, B] with respect to the
- welghting function W(Z). | |
A The N col;ocation points are chosen asgs roots to PNfZ);

which is the polynomial of the next highest order in the trial function

expansion, the highest being in equation (42), The basis for

_ Py
choosing the roots of the polynomial as the collocation points instead
of equidistant points in the intervalrof interest can be found in the
theor& of polﬁnomial interpoléﬁion. Several results, as documented
by Lanczos (1956) are éummgrized here:
1.  Polynomial expahsiopé are justified due to the funa-
mental theorem proved by Weierstrass in 1885 which
‘establighes that;any continuous function in a finite

interval can always be approximated to any degree of

gecuracy by finite power series.
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2, The Weierstrass ﬁheorem does not imply ﬁhat.an
approximating poiynomial can he dbtained by using
equidistant points. This behavior was studied by
Runge in 1901.wh0 showéd that equidistant inter-
polatibn of some very simple asnalytical functions
could in certaln regions yield wvery erroneous
results which did not disappear with increased points.
This behavior is termed fhe "Runge phenomenon,”

3. The difficulties which occur with eéuidistant inter-
polation disappear whén the zeros of the first

.Ineglected polynomial in the polynomial apﬁroxima-
tion aré used as interpolation points. However,
this introduces the need to know the roots of.fhe

- particular ﬁolynomial.

B. Problem Formulation Using Orthogonal Collocation

The soluti&ﬁ of parabolic partial differential equations
using orthos nal collchtion requires several steps which are independ-
ent of the particular‘eqﬁatién under consideration. This section
preserts two.formulations'which are theoretically equivalent but which
differ in compufational and coaing advantages. The first formulatioﬁ,
although sqmewhat more complex from a coding point of view, will be
shown to be superior for Qomﬁutétions;

A trial funétioﬁ has been proposed, finlayson (1972, p. 105),
for second ofder sy;tems-on‘the spatial interval [b, i] . For transient

snalysis, the trisl function is of the form:
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‘ N :
y(20)=£(8) vg (@) 242 (12) » o (6) P, (2) (46)
-=l
The above equation has N+2 unknowns: the functions f(8), g(&) and
{ai- (6)} » i=1, W, These are determined by the boundary conditions at
7Z=0 snd Z=1 and by- performing collocation at the N roots of PN(Z)'

Thus, one has a set of N+2 points:

B o= 0
Zyp = 1
and ‘ {Zj}; J=2, N+1; the roots of PN(Z).

Now, if one were to construct the approximate solution at

these N+2 points, a matrix equation would result:

_ — ' .j'— —

¥(2,+9) 17, 2,(1-2))P(2) 2 (12, )7 1(Z)) £ (o)
¥(zp0) | 1z, Zp(1-2,5)P(25) oo Zp(1-25)Py £ (Z5) & (6) )
: P | . a;(9)
¥(Zg,00 12 ZN+1an+1(l"ZN+1)Po(ZN+1)'"ZN+1(1"ZN+1)PN-1(?N+1 T
¥(Zy;p9) 1 ZN+2ZN+2(1-ZN+2)PO(ZN+2) " 'ZN+2(1-ZN+2)PN-1(ZN+2) a(8)

A A

Now define the following quantities:

| Y(Zi:fe)

Y(ZE:‘Q) .

v

(48)

le

¥(zy,1,0)|
y(ZN+2’e)
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1 Zy Zl(:_L-Zl)P'O(_Zl) eee 2y (172 )P 1 (2)
. Zo ZE(l-ZE)PO(.Ze) e z2(1-ze)PN_1(ze)
. .. : S .
2 Ty By (W20 Po(Z ) e Zﬁﬂ(l‘zml)PN-l(ZNﬂ) (k9)
*i ZN+2‘ ZN+2(1_ZN+2)PO(ZN+2—"" ZI\I-1~2(1"ZI\I+2)Pl\‘I-:L(ZI\T-rEL)___J
¢ (o))
g ()
4 .
£ | ay(0) - (50)
& (9)

© Use of equatidns“(MS),‘(hQ) and (50) reduces equation (47) to the more

compact form:

I

The spatial derivatives may be expressed in a similar form:

Q
e

3z - A& L (52)
2
2.Y . o £

(53)

I

Y
&
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wh'e_re _
1'—- A ——
0¥(2,,9)/ 3z
'%% : . (54)
3¥(Zy,1,0)/2 2
3 (Zy,, 510/ 32
(2,8 070 |
2 ' 2
o ¥(Z0,0)/ 3 2°
2. N
¢y £ j -
azz- _ . . | (55) .
' ' 2
y2y P19/ 02"
. bEY(ZNJ,E;G)/ Eval
Eﬂ] 31 = 0 3 =1, m2 <
E{ﬂa2::1 ":i--\l W42 ‘
S (%)
"“!.-. ) -7- aPi—B(Z;]) | o L
’Elj Jsl = Zj(l ZJ) a » + (l-QZj) Pi""B(Zj)’ J =1, M2

i

i3

3; N+2



and

[?ﬁﬂ 3,1 [%%] 3,2 = 3 j -1, W42

[ae] 3512, (1-3, )6291 3 Z5) 4 2(1- 2z, )2 Py _5(Zy)

s PR

-2 P; 3 (zj); =1, W2

i 3, W+2

(57)

The time-varying vector f may be eliminated from eguations (52) and

(53) by premultiplying equation (51) by the inverse of R, B

£ = FY y
‘ and
g ¥ -
—-m FT y
) =
aé
g S a1

—>3 = R R ¥

c.

1

s OT!

(58)

(59)

Equations (58) and (59) thus yield expressions for the first and second

spatial derivatives at the T2 points in terms of the solution at -

the N+2 points.

Alternative to the formulation of above is a formulatlon

wvhich is presented by Flnlayson (1972, pp. 105-106),

of equation (h6) yields an  (W+1) order polynomial:
N+1

£ (0) + :E: a, () 7t

'i=l_

y (2,0) =

Expan51on

(60)
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Writing the approximate solution at the N+2 points yields a matrix

equation similar to equation (51):

¥y =484 ; (61)
~ where; |
[ 2 N+1
1z 7 - 2y
2 N+1
1 22 22 .. 22
é L] - [ 3 ) V -
e | (62)
' 2 +1
1 2 TS S I leg-t»l
N+l
1 Zme e vt po
f (e)“ ~ -
4, (e)
A | 9x08)
a . (63)
)|
The first and second spatial derivative vectors can be written as:
)
—3—% = g d : (64)
‘and
g2 2 (65)
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where

P g se2 | 3el, W2

_9‘1]3'1 = G0 277 5 5] me - (66)
ol (s - i-3 .  §=1, W2

(Rl = (1) 622,775 53 me (67)

As in the first formulation, the time-varying vector, 4, may be elim-

‘inated from equa‘hioné (64) and (65) by pre-;multiplyin.g eq_uati‘on (61)

by the inverse of Q,° 9..1’ or:

a=g" y
and
oY S
3z - % & % (68)
o ) o 1 ] ‘
oY = 2 ¢ ¥ - (69)
37

Thus, equati ns (68) and (69) give expressions vhich are identical to
equations (58) and (59). The matrix product Rl B-l is equivalent
to QU 3‘1 and R2 _}};l is equivalent to @2 g—l. Since the

computations of g 2 gl, aﬁd 52 only require knowledge of the colloca-
tion points and not the knowlédg‘e of the parficular polynomial coef-
-ficient_s ‘being considered, oﬁe ﬁlight concelvably prefer the second
formulation. Both fomuigtions regqulire the computation of the inverse

of an (W2} square matrix.
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Compuﬁationally, it is desirable for the matrix being
invefted to be well-conditioned with respect to inversion.; An snalysis
has been made éomparing the inversion qualities of the matrices R and
Q. The ease of inyersion is ﬁeasured.by the éondition number of R and
'@ respectively and with the mumber of decimal digits which are left
unchanged following interative improvement of the initial Gauss-Jordén
reduction of each matrix, Stewart (1973) discusses thé problem of
'ill-conditioning and the use of iterative'improvement in matrix inversion.
Table 5 compares the invefsion characteristigs of R ‘and g for
" increasing N. The condition numbers.cited are lower bounds on the true

i

condition numbers relative to the Ll norm.* Appendix T shows how the
.lower bound and the upper bound on the conaition nuﬁber is computed.
Except in tﬁe enalysis of g for (2) 2 22 there were no practical
differences in the lower and upper bounds.

Tgble 5 indicates that the matrix R 1is well—conditioned
‘W:Lth regpect to :anersn.on using the doubln-precz.s:.on word length a,va:Ll—
able on the IBM 360/50 computer. In all cases, fhe computation of -
the product R 5_1 yielded a matrix whose off-diagonal elements were
léss than or equalito 10-16; The table also shows the progressively

poorer conditioning of @ with respect fo inversion. The (26 x 26)

case is so ill-conditioned that inversion using the available computer

*  The Ll norm of an (n x n) matrix A is defined as:

n
L, norm (A) 2 max ji: ’A
_ d Vi=n

5 J=1, 2, ... n
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Table 5._ Comparison of Conditioning of R and Q Matrices with

Respect to Inversion

, Tower Bound - . Lower Bound %
.AMat_rix_Size' "~ on Condition .of R ID(}TR on (_!ondition of § IDGTQ
(3%3) 0.120 x 10° 15 0.240 x 10° 15
((bhxh) 0.328 x 10° 15 ©0.149 x 10° 15
(5%5 ) 0.739 x 10° 15 0.9k x 10° 15
(‘,6. x 6 ) 0.142 x 105 15 | 0.591 x 101‘ 1h
{T7Tx7) 0.243 x 105 15 . 0.366 x 10° 1k

(8x8) 0.38L x 10° 315 . 0.225 x 10° 13
(9x%x9) 0.571 x 105 15 0.138 x 107 13

- (10 % 10) © 0.812 x 100 15 . 0.840 x 107 1
(11 x 11) . 0.111 x 10" 15 0.510 x 10° 11
(12 x 12) 0.148 x 100 15 0.309 x 10° 11
(1% x 14) 0.24k x 10" 15 0.112 x 10%t 9

(18 x 18) 0.545 % w0t 15 0.5 x 1ot 6
(22 x 22) 0103 x10° 15 0.177 x 10 5
(26 x 26) 0.179 3;'_,_'105-; 15 0.907 x 100 o

¢

IDGT is the approximate number of digits in the inverse which were
left unchanged after iterative improvement.

** There was no convergenceé in the iterative improvement. The upper

bound on the condition of 9 was 0.202 x 1039 based on the "best"
at. o

Note: Subscripts R and Q on- IDGT refer to inversion of R and Q
respectively. B -
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is computationally impossible. Based on condition numbers and,accuracy,.
éither formulation is acceptable for (W+2) s Sj while for (N+2) > 6,
the first formuation is pfeferable.

It should be noted that Finlayson (1972, p. 35) alludes to
this problem in his text but the comment is quite qualitative and some-
ﬁhat obscure:

" The orthogonality of the polynomials gives
compubational advantages, although the ssme approxi-
mation can be expressed in terms of powers of X,

. if the computations can be done accurately encugh."

The preceding analysis used the roots of the so-called shifted
Legendre polynémials. These are defined by equation (45) if one lets
a=0,b=1and w(Z)=1. The polynomial coefficients were computed
using the relationships of Villadsen (1970). Figure 6 shows the behéxior
ofrthe first four of these polynomials. The roots were computed by
shifting the abscissas from Gaussien quadrative formulae, available -in
Abramowitz and Segun (1965), Love (1966), and Stroud and Secresi (1966\.

| Although most of the problems solved by others using orthog-

onal collocation have not required over 12 collocation points, the

‘results of this section point out a computation disadvantage of the

second formulation which appears at a fairly small degree of discreti-
zation and which gets progressively worse. The first formulation
requires some additional information but suceessfully circumvents the

problems inherent in the second formulation.
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- Q. Sample Application of Orthogonal Collocation

The preceding canlbe applied to illustrate how a partial
differential equation of the type encountered in chromatographic systems
anélysis can be solved. The same example will be used (except for the
forcing function) as was considered in the evaluation of the finite

difference technique the problem'is:

(1/pe) (5 %/d7°%) - av/dz = 2v/oe

.V(Z, 0): O
y (0, @) = g (8) 3 6 > o
3y (2, 0)/02 = 0 ; 6 > 0

The preceding analysis has been conducted based on the spatial interval

of [}B i] -as the interval of orthogonality for the orthogonal poly-

. nomials used in the trial function expansion. However, as was shown in

Section w, 7 should be -different from unity depending on the wvalue

]
of the Pecl_t number. To avoid the derivation of addition polynomials
orthogonal on an intervél -[b, ZO] and the determination of the

required roots, the above problem may be rescaled in the spatial domain

by the following change in variable:

-Znew_= (l/ZO) Z‘

Therefore: L
gz = (1/20) 137, (70)

(1/92P = (1/2? (/a7 )"
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Use of equations (70) and (71) and deletion of the subscript "new"

yields the re-scaled pfoblem:
5 | ,
& (—z—z—) 8%/ -2} Ov/0m) = Iv/oe (1)

0 o - (73)

y (2, 0) =
y(0,0) =¢(® ; 6 > 0 | (74
Ov (L, 0)/0z = 0 3 6 > 0 (15)

Where one was concernediabout the dimensicnless length of unity in the
old coordinate system, one is now concerned with the dimensionless
lengtﬁ of (l/ZO) which now corresponds to the ocutlet of the bed.
One can now appiy the matrices given in equations (58) and
] {59) to yield a set of coupled, ordinary differential equations. Since
one requires the paftial differential equation to be satisfied at the
N collocation points, the result is N coupled ordinary differential

L] 55 Q(TD%‘) (’2"15")2 [ 5] (‘z‘lg“) D‘%l L P

=1, M2 3 =1, W2 (76)

then

N+2 -

S ay. |
E_e_a' z : [W] 3i Yi 5 J=2, N+l (77)
' i=1 ' '



Application of the boundary conditions yield:’

v = V(% 8) = £(8)

'and
N+2

i=1l

= ¢ (o)

Z [Rl -l]me, V3

Using equation (79) one may solve for AP (=y (ZN+2’ a8)):

- .
[& JN+2,1 51

N+l ,
Z (2 5 he,s % B
Vgp = o -
.N+2 ' [é% 5— RL

~ Equafions (78) and (80)

e

Wl -

+2, N+2 [;: R _]N+2, N+2

[ e 2 27

(B F howe

[W—J;; 2 [ =R-1JN+2,1

Rl R JN+2 N+2

e

+2,1

#

(8)

Ji

8.

(78)

(19)

(80)

can further be used to reduce equation (77) %o:

(81)
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Now, define the'following quantities:

e U
V1 Y2
Yo ¥3 .
y 8. -1, ‘ ‘ (82)
Yy Y1
le/de
. » & :
r = ) (83)
d Y, /d©
e L

15 20 - [w] EX
[A BEE 541, 441 [W 41, w2 LEE B e, a1/

ey

[Rl R ]N+2 W2 5 i=1, N 3 j=1, N (84)

[b] [:W] 41,1 ;I:W—]j+l, 1l\1+2 [3—_1 R

+2,l/

[B——l R ]N+2, W+2 3 j=1, N (85)

Equations (82} through (85) may now replace equation (81)
by: |

Z =

>

X b g (0 (86)

Thus, one has reduced the distributed system to a lumped system via the

spatial discretization given by application of the orthogonal collocation
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method. Equation (86) is a general fom for a forced, linear system
of Oréihary differential equations. The stability of the system is
detemined solely by the characteristic values or eigenvalues of the
system matrix A.

An eigenanaljsis was made of A fﬁr Peclet numbers of 1,
10, 100, 1000, and 10,000. The number of collocation points, N, was
varied in the sequence 4, 8, 12, 16, éo, and 24, The éhifted Legendre
pqiyndmials and roots were used in the anaiysis. The value of ZO was
held at 2 for all cases, |

For the cases of Pe of 10, 100, 1000, and 10,000, the

eigenanalysis yielded eigenvalues with negative real parts or the

calculation was stable, For the cases of 2 Pe of 1 and all N, there
was a least one eigenvalue with a poSitive'real part, revealing an
unstable computational method.

While stability,is indicated by the negative real parts of

the eigenvalues, an oscillatory behavior vas indicated by the preaende

of imaginary parts for a majofity of the ﬂigenva{ues in each case,

Prior to this eigenanalysis,'some similations had been made which exhibited

damped oscillation in response to @ (6) being a unit rectangular pulse.
Additional simulations were performed after the eigenanslysis with
similar oscillations noted in the responses at the colloccation points.
Figufe 7 shows & simulation fofl N;h, ZO=2 and Pezlé. The forcing
funcfion,.Aﬁ (), i=s a unit réctahgulér pulse of duration 5.0 dimen-
sionless time units. The value éf the response at Z = 1/7, is inter-
polated by the formuia;

: T -1

i

(87)

I
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whefe:.
1
(1/2,)
(1/24) (1 - 1/24) Py (1/7)
(1/zg) (1 - 1/z4) Py (1/Z,)

- I (88)

I~
np

(1/25) (1 = 1/20) 7y 1 (1/2))

‘ While the éiﬁﬁlation aﬁpears adequate for long-time dynamics,
" it appears inadequate for short-time dynamic situations which are in the
pulsed chromatogrgphic system,

: It is concluded that the trial function proposed‘for work
, ig axial-diffusign may be adequate for steady-stiate analysis and for
'long;time dynamic analysis ostysﬁems forced Ey inputs such as step
functions. The next seétioﬁ_presents ideas as o how a different trial
function expansion may gi%e-better fesults for tté short-time dynamics

prevalent in the pulsed chroﬁatographic system.

D. Use of Orthogonal Collocation in Chromatographic System

Modelling

The results of the previcus section have forced considera-
tion of a‘trial_function which may be more adequate for purposes of
the'dynamié analysis of the pulsed.chromatographic system. TFor the

problem considered in section VI.C., an alternative trial function
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expansion is proposed which may be more suitable for the pulsed system.
It is:
, N
;
¥(z,0) = f(e-z) + g(8) z + z(1-2) 25 8y (&) Py (z)
i=1 :

The difference from the previous trial function form resides
in the first texm of the trial function, f (6-z). At Z=0, this is
just £ (8) or ¢ (©), the input wave. At subsequent axial positions,

sl
the trial function is the translated input plus some adgitional terms
. to "correct” for the axial diffusion. This analysis corresponds to
the situation where Pe = m . A hyperbolic problem results with the

analytic solution:
y(2,0)= 9 (8- 2)

From the problem of diffusion and convection alone, this function
ineluded in the”%rial fungtion should yield a response with a correct
meaﬁ éince the mean of the response is unaffected by the diffusive :
term,

Use of this type of trial function revision is presently
_being studied. It is thought that results obtained by using this
‘révised trial function will be more faﬁorable than the results obtained

using equation (L46).

'VII. CONCLUSIONS AND FUTURE WORK

This report has summarized work conducted during the period
June 1972 through August 1973. The work has dealt with the area of

chromatographic systems study referred to as Model Improvement,
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Previcus work dictafed the formﬁlation of a model which‘todk into account
more of the dynamically relevant transport mechanisms. A model has been
formul ated which includes.intraparticle diffusion and rates of adsorp;
tion that were heretofore neglected. The model has been analysed using
the moment analysis technique. This analysis of the proposed Inter-
. Intraparticle Adsorption Model indicates that the gross characteristics
.ofractual data afe more adequately prgdicted than with previous models.

The mathematical complexity of the proposed Inter-Intraparticle
Adsorption Model has‘prompted consideration of mmerical technigues
. appropriate for the solution of the partial differential eqﬁation models
which are beiné postulated. The use of numerical techniques for the
second-order mﬁdels being congidered requires the use of a finite
terminal boundary condition. Criteria have been developed for a simple
m&del‘%herein a finite terminal boundary condition can be applied which
yields systemlre5pdnses which are for all intents and purposes egquiva-
lent to the responses'bbtained using an infinite ceolumn boundary condi-
tion.

Investigations:into fhe rwerits of the more popular Finite
Differénce Technique for solutions to partial differential eﬁuations
of the type enéountered in dhromatographié modelling hafe concluded
thaf their use is not warranted because of the large degree of spatial
discretization requiréd for mumerical stability. This drawback forces

the use of a large smount of computer time to perform simulations.



Invesﬁigations into the merits of the method of Orthogonal
Collocation as applied to the solution of partial differential equa-

. tions of the type encountered in chromatograph system models has
_ resulted in some inadequate results, However, the results are Based
on a trial function expansion which is more suitable for steady-state
sys'iaﬁ'.analfsis. The use of a modified trial function should give
results which hetter model the dynesmics of the system.

Future work in the area of chramatograph system modelling will
deal with the establlshment of a relizble and effieient technigue for
. the numerical solution of the chromatograph model equations such that
the dynamic effects ofrthe added transport mechanisms, which prohibit
- analytic solutions, may be adequately studied and analysed.
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- NOMENCLATURE

=
t

I+
1

g(e) -

unit impulse, Dirac delta function.

system matrix.defined by equation (Sh). ‘

areas under output response curve, input response
curfe, and impulse response curve, respectively.

1oﬁer bound of interwval of orthogonality used in

orthogonal polynomial definition, equation (45).

time~varying coefficients in trial funetion

expansion,

‘ratio of inferfacial area to packed volume,

upper bound of interval of orthogonality used in
orthogonal polynomial definition, equation (h5).
forcing function vector defined in egquation {85).
scale,factor_usedlin orthogonal polynomial
dgfihitiong equation (45).

time‘vérying coefficients in trial function
exﬁanéion. ¢ |

vecﬁor of time-varying coefficients defined in
equation (63).

time—varying fuﬁction in the trial function
expansion. |

vecéor of time-varying coefficients defined in
equation (50).

ﬁime—varying function in the trisl function

expansion.



=2 = -

=

RU

toG
Pe

R e

5]

e

- length of chromatograph column.

equilibrium constant,

nunber ;f'collocation points,

the number of reactor units, a dimensionless
measure of the rate of adsorption.

number of transfer units, dimensionless.

- Peclet number, dimensionless.

intraparticle Peclet number, a dimensionless
measure of diffusion rates within the particle,
interparticle Peclet mumber, a dimensionless
measure of diffusion rates within the carrier gas.
group‘of ﬁoiynomials, initially arbitrary but
later constrained to be orthogonal on interval
[;a, é] by equafion (45), |

matrix defined by equation (62).

matrix defined by equation (66).

matrix defined by equation (67).

intraparticle gpace variagble, dimensionless.

vector defined by equation (88).

particle radius.

rate of sample adsorption.

.- moles of fluid in particle per mole of adsorption

-sites.

mbles of fluid within the total bed per moles

of adsorption sites within the bed.
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matrix defined by equation (49).

matrix defined by eguation (56).

matrix defined by equation (57).

residual formed by trial function substitution
in a differential equation.

Laplace transfom variablé.

weighting function used in orthogonal polynomial
defining equation (L45).

welighting function in wéighted residual integral,
equation (43). |

matrix defined by equation (76).

adsorbed phase concentration, dimensionless.
interparticle gas phase composition, Qimensionless.

intraparticle gas phase composition, dimensionless.

equilibrium intraparticle gas phase compositioﬁ,
dimensionless.

vector defined by e@uation (L8).

vector defined by eguation (82),

vector defined by equation (83).

axial position in column, dimensionless.
collocation point or end point, dimensionless.
axial position where finite terminal boundary

condition, equation (33), is applied.
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particle porosity or wvoid fraction.

time inerement in finite difference method.
space increment in finite difference method.
Dirac delta function.

Kronecher delta

void fraction of the bed.

dimensionlesg time variable.

the nth moment gbout the origin defined by
equation (1h).

the nth moment gbout Hys defined by
equation (17).

function which satisfied boundary condition

in trial function expansion.

refers to Case I boundary condition analysis.
refers to Case II boundary condition analysis,
refers to space level in Finite Difference
technique; refers to column in Orthogonal
Collocation matrices.

referé to time level in Finite Difference tech-
niques; refers to row and/or collocation point

in Orthogonal Collocation matrices,

refers to the matrix element of the jth row and

ith column.
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Appendix A - Derivation of the Inter-Intraparticle Adsorption
Model Equations. . ,

DERIVATION AND DE-DIMENSIONALIZING oF THE INTER—-IMNRA-

 PAETICCE AVSOEPTION IMeDEL

——

A. DERIVATION ofF IHE INTEEPAETICLE GAS PHASE MmACS

— ) EAL,:WCE

CONSWDEE AN ELEMENT of Bw AX N LEA}(ITH W iITH
A CRoSS SECTIONAL AREA oF S

. The RATE AT WHICH SOLUTE ENTEES THE ELEMENT
AT X BY #WRopynAMic Frow 1s:¥ |

( 5';5’7@: g/(l*g) )y (<)

2. THE BATE AT WHICH SoLUTE (EAVES THE ECEMENT
AT Xk +AX EBY #YDEODYNAMC FloW ¢S

(¢ 355‘6'/(’”3)_)“4)6 i)

3. THE BATE A7 WHICH SotUrE SnTEELS AT X BY
DrFEVSION /8!

|- s De P/ET) 9Ydx]
OR : _L
~ (€S be g5 93k )y )

4. THE RAIE AT WHEH SoLuTE LEAVES AT X+ 4X
BY ODiFFUSIoA ¢5: ‘

- (“5 S De 'PS: 89 LX) x+ ax CAv)

S. THE RATE AT WHicH >50LUTE LEAVES AL yHE
PARTICLES (NTO  THE ELEMENT /5!

| ~ (A7 R*) 05 Dy pN (J9:/dr )pg 0% S )
# see separate MNOMENCLATURE LiST

2t The end of Yhis appencly For
- de"ann‘vm of Terms.
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Eouaroms (L)L), (i), L), And (V) may BE ComBINED Accomfﬂﬁ :
T THE ZE/_AT:DN ‘ _

ZNPUT — OUTPUT = ACCUMULATION
WHER € THE Accu;wmﬂox/ TERM 1S GIVEN BY:
| (eSpg dyht), ax | WA
wWHeERE (X 2% < X#0X),
OR ! | |
[{es Gsy/cz-g)),, - (éSng/chg))x,-Ax]
+ [(- €SVg &g dyby), ~ (- esd, 2 39 10%) 45 a2\ |
[ - én Rﬁ)pa Op BN (e:j;lc\rlzg S4x ) |
. = (¢S 2 dy 3+ ) ax (VALY
BIVIDING EQUATION (VL) BY & SdAX VIELHS:
~L &9 -9 prax - 65y -9, ) [ax
+ L (b o 398y )xeax — (dg pgaglaﬂx]/ax
- cwrz‘),ag DA@/é)N (dgs/dr)r_.-z = g dg 4 '.: ( vii,)

TAKING THE LIMIT OF EQUATLON (ViAA) AS AX—»O, WELDS TVE
FOLLOWING* '

De g O'YRX* — (¢ /a—g)’-) dyldx — 417/?‘,0; DyB/eINBLHr) -
=fdde (&)

OR
De é‘y/dx ~ [6s/oyt-l 2y By lax - 4MRDABION B /d1),. o

= 4t (k)
Mow/

e = 'Gs/ﬁ/-g) = 0, %
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oR!
v = cs/pgcz-—‘g) 5 WheH 15 THE LIVEARE
_ INTERSTITIAL VELOC/TY y ( xa)

ARD :

WHERE N A MUMBER OF SPHEEES pgp UN/T VoLUME oF B8&D

4 ?rREN = /-¢

F
oL

N = 3C-e)/4mR> ¢ XAR)

S5vBSTrUTION O©F EQuaTIONS (Xi) A#Md (XAL) raTe EQUATION(X)
YIELDS THE FolioWNg :

dg diyhys — [v/-)]19yRx -[30-)Pdaler] (99ilde)c.e = SYNE

ASsuming

(1-9) 2 1, THE ABOWE MAY BE LINEAREED To
NUIELD- .

Dg Yt - VO Rx —f_?,u—e)%bﬁlealLég;(&ﬂ&a = 99 3+

EQUATION (XAl) 1S THE DIMENSIONAL FORM OF THE NEARIRED,
TNTERPARTHALE GAS PRASE MASS BALANCE.

B. DERNAT\ON oF THE TINTREAVPACTICLE ¢CAs PAASE wnAss BALANE

CONSIDER A SPUERICAL SHELL o6F wWs\0E RpDWS v AND
TWOKNESS AT,

LTRE WNPUT OF SOLUTE DUE wo DIEFUSION 1S:

(A€ D £ Py Y f3v ), O (xiv)
2. THE OUTFLOW OF SoLUTE DUE To DLlFFUSIoN \&'
(AT ¢ Da § 0y Oy H‘")HM‘ (xv)

3. TAE ACCUMULATION OR -TERWSFER 9F WRATERWAL O
THE ADSORRED PHASE WITHN THE INCREMENT AC Vs ¢REN
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8y:
(4tvv*(1-8) g, O IA'OF 2\ " ( XVA)

Lo WERE & C LR & +ar

4. THE ACCUMULETWON TERN FOZ tHE QAS PHASE WTHN
THE PALTLLE & GNEW BY!

4Py A far). ae ' C XV4A)

WbeeE TECF Ly +ar

VSmé THE CELATON ) IRPUT - OUTPUT = ACCUMULATION ; EQUATIONS
xaAv), (x v}, (xva), ad (xmn) MAY BE CoMBtME.D ™ \ngx_g

[ (4nr‘bﬁppgc§3;/<\r)rm —~ er‘h&@ﬁg,&/&ﬂr]
- (4vr (1 -p) P, 8Ca ot )¢ ar
= (41 \r"‘.Ppg Qﬂifét\'\: AT (XVAAR)
DWIDING  EQUATON (ww:) THROVGH BY (4 ﬂ",Be A\“) AND tAWNG

THE LT AS AT 04 LEADS TD THE rolloWwing ?_Eb\jcﬁun OF
EQuATION {xuALL) &

Dy [aw o +(:91v~36\3 ér] Lo-p /o0y ] dcelie = eada( )
: ) X4X,

EQUATON (¥Ax) 1S “THE DmensiohAL Form OF THE TWTRAPARYILE
EAS PRASE (MASS BALARCE.

C. DERIUATION oF THE ADISRRED PHASE MASS RALANCE.

ASSUMINE NO InFFLUTION of Bulle FLOW OF ADSogTED MATERIAL

WITHIN THE ADSOPRED PRASE, THE FollowING EELAToN MAV BE
USED: ‘

L ' - P) fo ")C"J,C)t = Kags P% p (‘j» - ‘jﬁ:k) %)
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D. g me&moaw#m:e. ﬂEéﬁﬂnﬂS:‘HP BETWEEMN THE TNTRAPARTICLE
PRASE AND THE ADSOEBRED  PHASE. .
LT /S ASSUMED T'HAT A LINEAR  BELHTIOUSHD m Ay

B uvsep:
3{_ = m’'C, ' (kJMl)

E. AV FXTEBNAL (TAhTER - IAMIEAPACHICLE) BavNbaRY Cond /710N

) THE CoubrmioN AT THE SPHERE SURFHACE WHEN THEEE
/s A EES/STAMCE 710 mASS TRAUSFEL CAN BE GQNEN BY!
k‘a(%"td';—)i when ¢= &

oo (XZae)

TS EQuUATION DEFINES THE mASs TEANSFEE COEFFICIENT
VHLUE OF ky TNDICATES LrTHLE ELES/STANCE TO

kg « A LAEGE -
IMASS TEAUSFER A7 THE  TWTEL - ZNTRAPRETICLE REQION INTEE-
APPROACHES tA/FINITY, THE BESISTRIUCE 7o WIARS TRANS-

Face . A5 ky
FEL AT TRE  BOUADARY  APEIACHES ZEFo . TV TS Lem iz
EQuATION (x,m.c.) may BE RERACE) BY:

when r=R ( dziid,)

’;}4. = g( .J'

F. AR TNTEENAL (ZNTEAPARTICLE) goum}m\{ Cold1TToN
FEOM  QoMS IDEEATIONS ©F SYMMETEY, THE FOLBUWWG Coldmy/

MAY BE USED:
( xxsv)

(d‘j;/dr) =o

8. APPROPRIATE TNTEE PAEHCLE  Bouwbdey CoNDardNS

y(o ) ,:‘,4&, caxv)

Fnide tro ( KZV&:)

g/}gf)

X0
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H APPEOPEIATE  Wiride CoMdiriONS

Yylxyo)=0 X 7o (xxvie )
%‘ ()(J !’/o):-:o . ; . x 76, r20 (Xxvigee)
ta(x‘,r)p.) =0 k>0 ,rzo (xxax)

TU oLLEL  To MAKE  14e  PeEVIUSCY DEBNED  AND
POSTULATED E@UATIONS PIORE QENERAL, IT Is WNECESSALY

AAMD  APPROPRIRTE . 70 DEFINE AMD mPLEMENT DIMENSIONLES
VAEIRBLES AMND OQBEEF ICIENTS.
ONE  MAY PEFWNE THE Fo}.z.awwa QUAN T TIES !
4 A -)/hEﬁS(O/VCESS‘ TIHE !
& = yi/L . Gry)
2. B DIMEWSIONLESS  ANAL LENGTH:.
z- X/ | | (xrye)
3. 4 > im%mm&s.% | ?Abx}q.c LENCTH .
< | (x¥xax )
4. A | DIMIENS o LESS  AYIAL DVEFUScoN  MimBER

P

e = VL/D (rxxiex)

5. A D IWENSI SMC £55 mass TEAMFER COEFF/C/EMT !
Moo = Ky apl /e6 (X ExAY)
6. A DIMENSONCESS TNTRAPAETICLE DIFFUSiN NUuMBEE:

%4 = \/L/DA '(XK-XV)
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7. THE RATIO OF MocE€S OF FL/td PRESENT (N THE FREMCLE
20 THE MoiEs oF ADSOEPTION S[TES LIITHN THE PAETIALE:

Ry = P4 P C-B) Ca ( xxxvi)

8. 4 ;im5y5/bmc£ss EATE OF ALSORPTION Co&FEICIENT:
Mew = ket L/V ( xxxvar)
G A Dt NENSONLESS ADSORBED PHASE CoOlAEANTEATION:

Xo = Ga/Cer o (rxxVei<c)

THE PRECELING ‘.o,g):/m;r'/an/s WIRY BE AFRLIED TO INHE

Dimensiod At. SE - ©F EQUATIONS GIEN. AFTER THE
SuBSEQ UENT  MANIPULATIONS, A SET  OF DIMENSHONLESS

EQUATIONS 15 REALIZED. THE FRESULTS AELE!

| THE  ZNTERPALTICLE B AS PRASE ‘,Wss BAcAncE /5 :

| diy dy . o  de | ‘
- Teg E-Ei : EE - /Vfog (g y")ﬂ.:j Jo : (kae'-)f)

THE TNTEAPARTICLE . GAS PUASE 1MASS (BALANCE /S :

, 929, Jy | . :
=G5 +>"’f%f’—£—]“”eu(% ~4:") = 9%lge (X

THE ADSORBEL PUASE mASS BAsE :

/E_i,) dxa/fg -f- New €40 -—éjf) . (v0:)

A THEBTODYMAMIC. EBELATONSHID BETWEEN THE TNTRAFRENICLE
AND ADSoRPED PuAsES:

gf = M fa | (x4ix)
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AW EXTELNHL (TNTER- TWTRAPRETICLE) BOUVOARY Colidr77oN :

. ' [éafL(é)//%’] dy“./o’ﬂ, = /Véog(g"g,.f);"
| whepg Z=zL ... (¥dein

AN  ZNTERVAL ( MTRAPARIICLE) Bouvndp€Y  CobDrrioN :

dYifde = o0 ',; 2 = O (k<)
APPeopeiare :::mék' PARTICLE — BOOMDAEY  Cold rr7/pas! |
ylo,8) = Ay, &/
L Ylze) = Fute oo (ki)

APPROPRIZTE ZNiTIAL Cotrd 17/60/NS

ycz,0) <o , Zwo _.(kij)
Y. lz,r0)= 0 |y 270, ,RZo ( ¥dviic)
“Xalgn,0) = o ; 270,70 (3 liex)

/T SHovep BE MTED JyAr PEESENTATION OF 48V
EQUATIONS 1A THE mAnv Loby OF THE EsPorkr Ay omir

TFHE SoBScl/PT a oM  Ka AND THE PARARENTHESISEY
SUBSCEPT o) on Al -
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MNOPMENELR_RTVRE

it

RA7T/IO OF zWATEEFACIde AREA o PACKED mme,(’ 3(""5)/12).

VW 1mALSE FoR  REde TIME | DrBde. DECTA FUNCTION.

UNIT (MPULSE. FOR. DIMENSIONLESS 7IME ) O /RAC DELTA FONCHDN.-
Mol FS OF  ADSOEBED GAS PEE VUNIT WEIIGAT oF AbLSoREENT.
MoLES OF HADSOBRED CAS PER VMIT WECHT OF ADSoRBENT -
- WHEN ALl ADSoRPTION SiTES ARE OCCUPIED.

INTRAPARTIOLE DiFAUSION CoEFFICIENT

INTER PARTICLE AliAsL DIFFUS/oN CoeFFICIENT.

Mot QB VELDLITY OF G HAS STEEAM,

Rocgle VELsL!TY OF CHAREIER GHS.

ADSORPTIVE EATE CoNsTANT DEF/WNED AS THE 7T/ME BATE oF
CHANCE oF THE EATIO OF /MOLES F A0SoRRED DuASE PEER
UNIT VOLUME oF PRETICLE TO THE MOLES OF TNTEAPARTICLE
PHASE FPEE VUM VOLUME OF FARTICVE UVold VoL VME.

Flem) TRANSFETZ CoELF/IEAT DELMED AS THE Arem BATE
OF TEANSFER OF Hot£S PER EXATERLAL. SUEBFACE AReAd
Pee  paeTicce.

LENGTH OF CHEOMRTOEEAPH QoLuvmpN

= EQUicIBEIUM OoNSTANT DEFINED 1N EQUATION ( xlis).

= EQUIcIBEIum CoNsSTANT DEF/NED /N EQURTION Lxm‘)_.

= MymBEFE OF SPHEEES PR UAi7 Ved e OF BED.

= DIMEVSIoNLESS ADSORPTION BATE CoEFCICIENTT

DIth ENSIONLESS 1ASS TEANSFER COEFFICIENT.

PRESSUEE TN THE BeD. ‘
Dithepsston cesS  ZUTRAPARTICLE  DIFFUS/oNl CoEFE1CIEN T,
DIMENSIONLESS LHTERPARTICLE AXiAe DIFFUSION COEEFICIENT.
DIMENSIONAL RADIAL  DISTHNCE Wit} THE PALTICLE,

btdvf:wsrom;t; POSITION WITHIN THE PRARYFICLE ECEMEAT o0F
THICEVESS A1

DIMENSLONCESS THNTEAPARNCLE LENGTH .
PARTICLE ZAdIVS .
CAs Cols7AmT.

RATIO ©F Mpess OF FLUD wwmuw THE PPEITCLE To Twe
MotEsS OF ADIORPTION SITES MW THE PAETICLE.

CEoSS -SECT/IONAL  EcemexyT OF THE B£2.

LimiEps o4 TIME |

TEMPERATURE OF THE BED.

LINEAE JNTEESTI7IAL VELOC(TY.

DINENSI 0N AKAC PoSmrron N 7THE BED.
DIMeNSlouAL ArinL  POSITION WiTKV THE ELEMENT AX

T

nu

!

Ll

iy !

) it

L1}

u W kg ogn

TR

nnononoq

i
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Xee = MOLE FRACTION OF FEILLED ADSoEPTION SITES , DIMENSIONLESS

Q- T CONCENTRATION N THE INTERPAPHCLE BEGCION, DMeNSIONLESS.

Yo = CONCENTEATION Ry THE INTRAPACTIGLE REGWN, DiMepsoNLESS.

Yr T EQUILBRIUM CONCENTZATION W THE INTRAPARMICLE £EGioN),
Dimens\oiLEsS, -

2 -_

BAMENSINLESS  AtAL. (TUTERPATHOE) LeNGTH-
GREEL LETTERS

f = pPAETCLE PoROSTM  oE VYom ERACTLSY.
AX = DIUMENSIONAL AX(AL TRNCREMENT
AP = D iMmeNsegAl

W TN THE RED.
RADIA L TNCREMENT  WITHIN THE PATTCLE.
& = BED Youb FRACTHDON. ‘ ‘
Py = ™Morar DENSIM OF THE GAS.
PL T APPARENT DENS TV OF THE PARTICLE . UNIT WELGHT ofF
AD SORRENT PESE UNIT VOLOME. OF -PAE:?-—{C.LE.
[ =) fund

b LmE_NS\nN LESS ‘r\h\ E.
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Appendix B Details of Moment Analysis for Pulsed Systems.

*
DETAILS oF MOMENT ANACYSIS FOR PULSEDH SYSTEMS

C THE  IMPULSE RESPONSE OF A4 OHEMIlHL EEACTOR /S SOMETIMES
REFEEEED TOo AS THE EESIDENCE TiniE FEEQUENCY DISTE/RUTION.
THE ISTEP ZEsPoﬂsr-_' THE INTEGCRAL. OF THE MPULSE RESPONS E
Is THEN TEEMED 7’#5 CUMVLATTVE RESIDEANCE 7/ME D/s rz:gur/oﬂ-
THESE QUANTITIES = EESEMELE  THE DISTRIBUTIONS STUDIED /M7
STRTISTICAL ANALYSIS; £2., THE PROEABILITY bISTRIBUTION FUNCTION
D THE CuMULATIVE BISTEIBVTION FUNAT7oN.

ONVE Y CHARACTERIZE K PECTICULAL DISTRIRUTTON
FUNCTION, Fco), BY TTS /MOMENTS . THE MOMENTS CAV BE DE_F/NEO
BV THE F%.c;owmc; EGQuUATIoN:

Ay /gﬂffejié/f/(a)da @

-~

TRE  MOWENTS DPEFWED Y THE ABoVE EQUATION MEE 7ESEMED
ABSOCUTE IMOMENTS OF MOMENTS ARBour THE oLrig/i). THE
DENOMINRIOR /N EHUATION (gc) IS TJULT THE AHEPER UVWDEE THE
CURVE , +c¢8).

THE Eretq47/oMSHIES oF TA(E VAEIDUS MOMIENTS 1o THE

LAPLACE TEANSIOEM CAV BE JISCERNED WHEN THE TEANSEEMN
IS WRITTEY N TEEMS o©F An TMNEMITE SELIES,

LET: - Fes) = .,Za[_-}'(e) ¢
THERE FOBE: ‘ '
.,r:(_s)che-SP;ceue = f(/-'Se +js"9"-—é‘5?‘es 4-5,‘;4 st )f@a’a

o .

CAREYVING THE  INTEGERC THEWCH AND F#d?@ﬂ/ﬂ& ouvr j F@le
GIVES!

Fes) = fﬁe)dazfl - fa{@) +4s2 fa Helde _ 45 f9 KoYdo 4_]’9"'5’&)0{9

e "‘24

j‘,r@ de f,r(ada / Fe)de oj,r@ do

M SOME ASPECTS OF THS DEVELOPRENT FPALALLEL THOSE PPESENTED

BY DOUGLAS,T. M. -“/’,“.955 Dynamies and Con’#s/, Volume 7 : Analysis oF
ngmm Sgs?fcms " Brentice - Aall, Tre. E?/ewm{ C'/,Fg New Tersey
1972, pp- 25¢-257; 265 - 248,
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EECALLING THE DEFMNITION OF THE M momeyr QivgA In

EQuATION (i), THE TB«%;Fozm CAN Now BE WEITTrEN (N TELMS
OF THE MOMENTS :

Fe) = (of‘}'(e)de) [j. ~Su vLsta,

L3 a4
SMy 530, ]

Mo | - OoNE  CAN SHow THE BELATIONSHIP OF THE CAPLACE

TEANSFOEN] 7O THE MOMENT FUONCTIONS

Mirn f‘,;'”ffeue = [Ferde = 45
s> o © o .

A .
wkclE: Af = THE ARER ONDEE THE COBLE Fce).

AD

Ly f';‘s[bﬁ‘f-"”;@)der] = Mﬁee‘”fé)a’e

S50 I-a'0 e

- ( S !é)da) jé} f/s}/a)

7{@)49

; |
'ﬁ"’:?[;‘sﬂ‘—‘ ~Ar A,

}LSO'. . - o
tom - [ f e‘e""o%e)daj =t Jo'a ferde
s90 OS5 L | S50 ©
L _o_re *Se)de
. a"- ~ . _ .
Lnd I = ag e

THESE EIPRESSIONG - L.E,Aw TO THE MOEE CENEEAL EECLATIONSHAP

(_fe.“"e' ferde| = 1) f;"‘F(e)de

S-?a
og:

%_ | Fd] = 13 As Al

.
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SoLUiING FOE A, AND XNSEETING THE PEFINITION oF Af
Y(ELDS THE ZECLATIONSHP FoE THE WMOMENTS 0 THE

LRAPLACE TRANSFOTEM?'

sS%o d I>o

My = LY md [_;cs)]/m oo (i)

THE PEECEDWG AN BE Us£L TO oBTAW INFOEMATION ForR
. SYSTEMS FoBLED BY AEBITEARY puLSE /NPUTS. COASWEEL THE
FoceoW N TEANSFER FUNCTION RBeoock DiIASEAM:

p)
Xes) ecs) NVes) -

WHEEE !

(s = ,‘(’[um]- Xe) 15 THE ToRCING FUNCTION,

N = % [4eer] ; yle) 15 THE OUTRUT WAVE.
HCs) = SNSTEM TEAWSFER FUNCTwoN, wiew \S
THE LAPLACE TEMTTFORMNM o ‘w»g \n\NLg,E

YESPONSE OF THE SYsSTER.

THE  BLocK DIAGEAMN  YIELDS THE TOLLOWING pELATIoReWIP!

V) = @Y XE) ' ¢ L)

"NowW EACH TRANGTORM CAN RBRE CoONGLDERED N TEEMS oF
ITS RESPECTIYE MOMENTS:® ’

Xisd = Ay [3-'“ SApy + 3 Stﬂz, ~- £ My, 34 Sty .- ] &)

i

Visy = A LL - sy AE S M - B, +335 My — ... ] (e)

6 = Ag[ 1 - SMg + 55 Mag - £5PMag + 284S N4~ <o ~l Cve)

SUBST\TUTING  EQuAToNs  (Av),V) AvD (VA) ITWTo  EQUATION (il

YIELDS THE FoLLOWING



AL Sty +5SMy 6 SPMay + 3750 - ]
= A,AG [1-9 Fhg) + BN+ M M, * Mz, )
- % SBCNH * 3l Mzy 3Nz M, ""'ﬂ‘;c,)
'*5“4- 54(M4,¢ + 41),61131 teMg hlyy ¥ Mz My ‘*’”45),
=] | e Cvid)

EQUATING THE COEFFICIENTS oF THE pewels OF = IN
EQUAMON (vii) NI1ELDS THE FolLoWING CELATIONSHIPS -

Ay = Ay Ag | (vets)
Moy = My +Mig | 1,
May = My + M by T Moy ¢ x)
/day = May ¥ 3y Mok t Bk My T My (xA)

EQUATION (VAIA) STHTES THAT THE PRODUCT ©F THE AREA UNIER
THE IMRILSE RESPONSE Aud THE AREA UVMDEE THE /NPUT PULSE
EQUALS THE ABLEA VMDER THE OUTPUT RULSE.

EQUATION (A x ) sTATES THBT FHE ELY OF THE ovTPuT or_éuzs AT
THE Sum OF THE MEANS OF THE JudlT AND TMPULSE. -

THIS DISCUSSnAN Coutd BE CONTINVED v TEEMS oOF THE AffGHER
ABSOLUTE MOMENTS Fur FoB NZ2, TNTEREST CELTEES o8N

MOMBENTS  ABNNT THE MEAN, My. THESE MomEXNTS ACE DEFWED
By THE FOLLOWIUE !

My = f(e—ﬂ,)"ﬁe)a’e/fﬁe)/a ; NF= (xAL)

EXPAYS)oN oF THE ABWE  YIELDS EXPRESS/oNS FoR 4l I
TEEMS OF THE MOMENTS M,

FOE n=z=a, THE RBEsSULT /57

M = My — M ¢ xAid)
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{Wz_ s THE ‘ VAEIANCE oF 7T#E .Dr's'rma’amﬁ FuleTion.
Faf_ ﬁ:s, THE .EEsua‘r /5 :

6?3‘ = ;cls ~ 3, My + 207

VSve EQUATION (YAIL) THiS EEDUCES 70 :

Mz = My — ‘54'45; -7 | ( xav)

US/ME EQUATIONS (XL ) AND (KXKAV), o0wE CAN REWRITE

- EQUATIONS (X)) AN (xel) yes TEEMS oF 7THE BESPECTINE  momEuwTS
ABowrT THE menN M;Y ; Ay ) M56 , ,qz ﬁzx; Az .Tﬂé{tfs.fug EQUA Ttow {Q))
THE RESJLTS .4,:;.

idf_zy‘-.;- ‘(?Zx + d:(;-(." (m/)
AND
May = iy A, ' Cxyp)

THUS  FHE VAEBIANCE OF T#E @U?R.JT’ S5 THRE S o THE
| VABIRNCE OF 7HE MPuT AND THE IMPULSE RESPONSE. THE
THIED MomestT ABOUVT THE OCICIN OF 7HE RESFONSE CPECATED
0 SKEW) /s THE SUm OF THE THIRZD MoMERTS AQovT THE BESPEcHE
IIEANS OF THE /ARUT Had TrAPVLSE RESZDASE,

. : ¢
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Appendix ¢ Derivation of the Transfer Function for the
' . Inter-Intraparticle Adsorption Model.

DEQIW}TMA/ OF THE TEARNSFEL FUNCTION FPE TﬁfE TNTER —IWTEA -

PAETICLE AL2SoBPTror) MODEL

T HE NobE L  EQUATIONS BRE:

" dat Je
z d)’a, %
E} Je Mew [gf‘- -gai) C.um)
> («v)

i[(ﬂ/é-')wg)/&‘] %-“?f. = Moo (Y=Yi); when =1 . cv)

_.i-d " = O Ao fVAf)

dn J
ytge) =o  ; zze (Vi)
Yi (g, 0y =0, ¥T70,RZO (v'{iié)
Ka CE,/’Z)O) =& L 2P0, 7o (Lx)
gj(O 8) = Ags = A-d6) (%)

{4(2 o) = Fimte (xi)

2-—300

ONE  mAY  Now PMCEEJ WiTH THE TRARSFER FokerioN

DERIVATION :
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FIRST, TAKE 7THE wpwcg TeONSFOEN HE EQUATION (L);
THS VIELPS :

- A (?._,s) ' ( ) :
J%E di - __o_{dy__g_i{__ - A/ﬁ;é[ﬁcz‘JS)-BACiﬂ% s)]lz,:,f

= Jy[@s) - ;1('3_,0)
'/_SMHS- E?U#TTGA/-[I{'A:(:); 7S
L L d298s) Jyce,s)

PEE )

dz* - Tae - Mgoe [g(E’S)":’»‘(%%S)],L:, =5 ‘jC-E,s) (k<)

BE COMNES !

MW | TRAKE THE LAPLACE TRANSFORM OF EuMmtioN (<)

AT,
;’3:’ (z%) [ (Z{/Zf 2 dYa Ce;fl,Sf/ Mm[ﬁh Zzﬂs) -Yi (ggs)]

T 5Y.25) -C,j,;Ca,/z, o)

Ve 6 Eqau.amoﬁ/(m'ici) s

‘ A(a/fS) N4 )"?,S) (W
}-}A (ﬂ [ Ty i g ke j /Vga[tya.(‘?’q)“) SA. CE@S%] 534(3/25) H )

1:4@5Foemm6 EQUA-T!M/ (il )

Broomes:

ViEcDS

" [S')’,;(?/ZS> - X lzr0)] = New [ Yaleas)- 3,,,""(3,43]

Vsemg | EQUATION (Ax), THIS BE Comes’
| 7 S xarc’g,.t_,s) = Mo LY5 (52,5) - gfc'g/e; 's)] ¢ Xav)
TEANS FORMING  EQU#TION (W) ViEL bS !
yj’f(e& s) | = mA(zas) Cxv)
Usimvé

EQuaTIaN (M) IN EQUATION Cxat)  CIUES
/

—p o

o SYrcgas) = New LY cets) - 4lcga,s)
L
SoLUING Fol y}'(z},@s) € IVES:

9 = (Mew Msini) +Ved)] 5 (Bris) ()
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HoW EQUATION (XVA) MAY BE SUBSTITVIED INTO covarion (kdéc) 7O
ELintinATE j {E,n,8), AFrclL Some JEEAEM/J‘EMEMT FHE SOBSTITY—

TroN RESULTS N THE FolilowiNG EQUATIOA:

dEYL(Bns) o NCT D, R ' ”
..._37;___.‘ ~ = _%2_&5 — 4, Yigags) = o CxVAE)
WHERE !

a, = Functin of s

2
a, =Zf Meu, + Me +S](—§) Pq‘} € XVadc)
w‘-fgu

Mow  EQUATION (rpal) mysT BE sorved Foe Y (ZA,s). REWEITE
EQUHTION (ki/Al) As:’ :

et
T M + ol "3’,“53,4..5)

T — - a,ngilgLs) =o (xar)

PROPoSE A  SotuTioN or THE FoEm:
e .
Yilaas)= _L cosh(Gr) + L2 sih(ir)

THE ComsTmATS C wirn .EESPEr.':r 70 ) musT BE DETEERmMWED.
BPPe sreRTION oF FHE ngmoem=a BOCLOARY COADITION,
: EQWJ-'non/(lm) GWES !

"':.-O

. A l 4 .
~ ADPcroATrON OF 7-#5 Bovwda ey Cogd rion, EQUAITONCY),
CIVES (dFreg soms m,qmpunwa

e, = b gc-z.,s)/[cb-/)smh(@)+VcT,Cosha@)_]

LWHERE'

b= /U;,Log/[@/&) (Lle) at/Pes] (vz)

THEEE FORE !

b
Sm/'i(‘l""/&.) .
gﬁ (6/55) y(“‘-)’(}s) [(6 /)Sfa/}(r) 'f']«E' COS/I (@)J} —-—-—-——-- (XXL)

EQuaTION (kxa) S THE Ngcgssﬂﬁv COUPLING EBELATIONSHIP NEEDED
FOR SoLuTioN of EHuATIoN (Ul). RECALL EQUATION (XAL):

.L d‘i&s) dg{igs) Uy, [9(@5) g(zn,sgzcw = 3 Y(%s) (14e)

Re a2z
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EVALOATING EQUATION (XXA) 4T =1 YVIELDS ;

] [ b Smbli) _
9 C 4 8) = GBS ) cinhia) + V7, Conh tr)
Maw,'- :
LET - .
) = [r b smhi) { xzil)
U (L0 simniE) « 7 cosnam]
THELE roR £ :

";I,LCB,I,S) = Yegs) Acs)

SVBSTfTUrTON OF  THIS wNTD E?U#ﬂﬁ”["'u} HAD EAEZ#UC*EMEMT
CIVES ! 7 \ :
L d¥Es) | dyceo : _
B, iz ,_a%_z_" _—-J'KSJ g(é,s) =0  kxAil)
WHERSE o
I& = [(/f/fug[/—}is)] +‘6'f ( x2Av)
Lr THE

VARIBBLE B, EQUATION (XYA) 1s A CIMEAR , HomoeswEss,
SECo D ~ORLEL, CoN STRNT ao..e;:}'—vczsfvr, CEIIMIREN D1FFPELEATIAA
| EQUATION.  THE OHRRACTERISTIC EQUATION OF E¢uarion CxALl)

As ! - .
/P—I-)PZ——P - J'(.s)':o
& - :
THE  Roors APE:

- 1 Y7 #9518

(R/Rg)
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" Appendix D Denvatlon of the Moments of the Impulse Response of
"~ the Inter-Intrapartlcle Adsorption Model.
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Appendix E Case I and Case II Transfer Function Derivations
and Moment Derivations.
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Appendix F Upper and Lower Bounds for the Condition of a Matrix.
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